Material Flow and Microstructure in the Friction Stir Butt Welds of the Same and Dissimilar Aluminum Alloys

ثبت نشده
چکیده

The material flow and microstructural evolution in the friction stir welds of a 6061-Al alloy to itself and of a 6061-Al alloy to 2024-Al alloy plates of 12.7 mm in thickness were studied under different welding conditions. The results showed that plastic deformation, flow, and mechanical mixing of the material exhibit distinct asymmetry characteristics at both sides of the same and dissimilar welds. The microstructure in dissimilar 6061-Al/2024-Al welds is significantly different from that in the welds of a 6061-Al alloy to itself. Vortex-like structures featured by the concentric flow lines for a weld of 6061-Al alloy to itself, and alternative lamellae with different alloy constituents for a weld of 6061-Al to 2024-Al alloy, are attributed to the stirring action of the threaded tool, in situ extrusion, and traverse motion along the welding direction. The mutual mixing in the dissimilar metal welds is intimate and far from complete. However, the bonding between the two Al-alloys is clearly complete. Three different regions in the nugget zone of dissimilar 6061-Al/2024-Al welds are classified by the mechanically mixed region (MMR) characterized by the relatively dispersed particles of different alloy constituents, the stirring-induced plastic flow region (SPFR) consisting of alternative vortex-like lamellae of the two Al-alloys, and the unmixed region (UMR) consisting of fine equiaxed grains of the 6061-Al alloy. Within all of these three regions, the material is able to withstand a very high degree of plastic deformation due to the presence of dynamic recovery or recrystallization of the microstructure. The degree of material mixing, the thickness of the deformed Al-alloy lamellae, and the material flow patterns depend on the related positions in the nugget zone and the processing parameters. Distinct fluctuations of hardness are found to correspond to the microstructural changes throughout the nugget zone of dissimilar welds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of nanoparticles addition on dissimilar joining of aluminum alloys by friction stir welding

The purpose of this study was to examine the effect of adding Nano particles such as Nano Carbon Tube during Friction Stir Welding (FSW) on dissimilar Al alloy joints. More specifically, both FSW and Friction Stir Processing (FSP) were performed simultaneously to investigate the effect of adding Nano particles on mechanical properties and microstructure of the weld zone for joining AA5754-H22 a...

متن کامل

Effect of nanoparticles addition on dissimilar joining of aluminum alloys by friction stir welding

The purpose of this study was to examine the effect of adding Nano particles such as Nano Carbon Tube during Friction Stir Welding (FSW) on dissimilar Al alloy joints. More specifically, both FSW and Friction Stir Processing (FSP) were performed simultaneously to investigate the effect of adding Nano particles on mechanical properties and microstructure of the weld zone for joining AA5754-H22 a...

متن کامل

Bimetal friction stir welding of aluminum to magnesium

FSW material flow and phase transformation were studied at the interface of dissimilar welding of Al 6013 to Mg. Defect free butt weld was obtained when aluminum and magnesium test plates were placed in the advancing side and retreating side respectively, and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand how the materials flow during FSW, steel ...

متن کامل

Coupled Eulerian-Lagrangian (CEL) Modeling of Material Flow in Dissimilar Friction Stir Welding of Aluminum Alloys

In this work, the finite element simulation of dissimilar friction stir welding process is investigated. The welded materials are AA 6061-T6 and AA 7075-T6 aluminum alloys. For this purpose, a 3D coupled thermo-mechanical finite element model is developed according to the Coupled Eulerian-Lagrangian (CEL) method. The CEL method has the advantages of both Lagrangian and Eulerian approaches, whic...

متن کامل

Effect of Post-weld Heat Treatment on Joint Properties of Dissimilar Friction Stir Welded AA2024 and AA7075 Aluminum Alloys

In present study, the effect of heat treatment after friction stir welding dissimilar welds T6-7075 and T4-2024 aluminum alloys were investigated. Friction stir welding was performed at a constant rotation speed of 1140 rpm and welding speed 32 mm/min. After welding samples are taken under various heat treatment processes at different aging temperature and time period. Microstructural observati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002